KIT | KIT-Bibliothek | Impressum | Datenschutz

Insights into the application of explainable artificial intelligence for biological wastewater treatment plants: Updates and perspectives

Sheik, Abdul Gaffar; Kumar, Arvind; Srungavarapu, Chandra Sainadh; Azari, Mohammad ORCID iD icon 1; Ambati, Seshagiri Rao; Bux, Faizal ; Patan, Ameer Khan
1 Institut für Wasser und Umwelt (IWU), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

Explainable artificial intelligence (XAI) is an interactive platform that assists users in comprehending the decisions and predictions made by machine learning (ML) models. This allows users to enhance their knowledge of ML models and their functioning, which not only helps in mitigating bias and errors but also aids in improving user decision-making confidence. XAI, due to its ability to increase the model output interpretation, has gained significant attention in biological wastewater treatment plants (WWTPs). This is owing, in particular, to the fact that it facilitates the experts in steering knowledge about the predictions and decisions made by ML, thus guaranteeing that the model decisions are fair and unbiased. ML has made amazing advances in recent years, thanks to its exponential growth in possessing the power to process massive volumes of data, allowing it to be widely embraced in WWTPs. This review seeks to illustrate the potential of XAI for WWTP applications such as process modeling and control, soft sensing, fusion of data, and the internet of things, and fill the knowledge gap by thoroughly introducing XAI techniques and their use in smart wastewater engineering. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000188313
Veröffentlicht am 10.12.2025
Originalveröffentlichung
DOI: 10.1016/j.engappai.2025.110132
Scopus
Zitationen: 8
Web of Science
Zitationen: 6
Dimensions
Zitationen: 10
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Wasser und Umwelt (IWU)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 03.2025
Sprache Englisch
Identifikator ISSN: 0952-1976
KITopen-ID: 1000188313
Erschienen in Engineering Applications of Artificial Intelligence
Verlag Elsevier
Band 144
Seiten 110132
Schlagwörter Explainable artificial intelligence, Trustworthiness of artificial intelligence, Machine-learning, Process modeling and control, Smart water engineering, Wastewater treatment plants
Nachgewiesen in Web of Science
OpenAlex
Dimensions
Scopus
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page