KIT | KIT-Bibliothek | Impressum | Datenschutz

Neural Network Models for Prediction of Biological Activity using Molecular Dynamics Data: A Case of Photoswitchable Peptides

Cherednichenko, Anton; Afonin, Sergii 1; Babii, Oleg 2; Voitsitskyi, Taras; Stratiichuk, Roman; Koleiev, Ihor; Vozniak, Volodymyr; Shevchuk, Nazar; Ostrovsky, Zakhar; Yesylevskyy, Semen; Nafiiev, Alan; Starosyla, Serhii; Ulrich, Anne S. ORCID iD icon 2; Jirgensons, Aigars; Komarov, Igor V.
1 Institut für Biologische Grenzflächen (IBG), Karlsruher Institut für Technologie (KIT)
2 Institut für Organische Chemie (IOC), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

Prediction of biological activities of chemical compounds by the machine learning techniques in general and the neural networks (NNs) in particular, is usually based on the analysis of their binding to the target of interest. If such affinity data is not available, the ligand-based approaches can be used where the NN models are trained to assess similarity of compounds to those with known biological activity. Obviously, this approach only works well if the similarity between the training set and the evaluated molecules is sufficiently high. In the case of large and conformationally flexible organic compounds, the activity becomes dependent not only on chemical identity but also on the dynamics of molecular motions, which imposes significant challenges to existing approaches based on static structural 2D and 3D molecular descriptors. A prominent example of compounds, which are especially challenging for existing NN activity prediction techniques, are photoswitchable macrocyclic peptides containing a diarylethene “photoswitch” (DAE). These molecules exist in two isomeric forms with remarkably different biological activities, which are interconvertible by light of different wavelengths. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000188485
Veröffentlicht am 12.12.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Biologische Grenzflächen (IBG)
Institut für Organische Chemie (IOC)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 07.2025
Sprache Englisch
Identifikator ISSN: 1868-1743, 1868-1751
KITopen-ID: 1000188485
HGF-Programm 47.14.01 (POF IV, LK 01) Molekular Information Processing in Cellular Systems
Erschienen in Molecular Informatics
Verlag Wiley-VCH Verlag
Band 44
Heft 7
Vorab online veröffentlicht am 14.07.2025
Schlagwörter biological activity | diarylethenes | molecular dynamics | neuronal network models | photoswitchable peptides
Nachgewiesen in Dimensions
OpenAlex
Web of Science
Scopus
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page