KIT | KIT-Bibliothek | Impressum | Datenschutz

Statistical Guarantees for Generative Models as Distribution Estimators

Kunkel, Lea Maria 1
1 Institut für Stochastik (STOCH), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

Generative models have emerged as a symbol of artificial intelligence, enabling computers to mimic human behavior based on large datasets. While the empirical results are impressive, the theoretical understanding lags behind. Naturally, using more training data should result in a better model. In a rigorous mathematical setting, we aim to bound a model's error by a declining function of the number of samples. In this thesis, we study such upper bounds for two models: Generative Adversarial Networks (GANs) and Flow Matching. Furthermore, we will extend Flow Matching to the setting of conditional distribution estimation. Along the way, we will also investigate classical kernel-based methods for distribution estimation.

Since their introduction in 2014, GANs have evolved from the initial Vanilla setup to several adaptations. The statistical literature mainly focuses on Wasserstein GANs and their generalizations, which can build on the theory of optimal transport. In contrast, statistical results for Vanilla GANs are limited to very specific settings. To bridge this gap, we establish a connection between Vanilla GANs and the Wasserstein-$1$ distance by leveraging the neural network architecture commonly used in practice. ... mehr


Volltext §
DOI: 10.5445/IR/1000188527
Veröffentlicht am 18.12.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Stochastik (STOCH)
Publikationstyp Hochschulschrift
Publikationsdatum 18.12.2025
Sprache Englisch
Identifikator KITopen-ID: 1000188527
Verlag Karlsruher Institut für Technologie (KIT)
Umfang XIV, 187 S.
Art der Arbeit Dissertation
Fakultät Fakultät für Mathematik (MATH)
Institut Institut für Stochastik (STOCH)
Prüfungsdatum 03.12.2025
Nachgewiesen in OpenAlex
Referent/Betreuer Trabs, Mathias
Gneiting, Tilmann
Dalalyan, Arnak S.
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page