KIT | KIT-Bibliothek | Impressum | Datenschutz

Diameter constraints in 2-distance graphs

Al-saadi, Oleksiy ; Natal, Joseph 1
1 Institut für Theoretische Teilchenphysik (TTP), Karlsruher Institut für Technologie (KIT)

Abstract:

For any finite, simple graph G = (V, E), its 2-distance graph G$_2$ is a graph having the same vertex set V where two vertices are adjacent if and only if their distance is 2 in G. Connectivity and diameter properties of these graphs have been well studied. For example, it has been shown that if diam(G) = k ≥ 3 then ⌈(1/2k) ⌉ ≤ diam(G$_2$), and that this bound is sharp. In this paper, we prove that diam(G$_2$) = ∞ (that is, G$_2$ is disconnected) or otherwise diam(G$_2$) ≤ k + 2. In addition, we show that this inequality is sharp for any even k, a result that we verify for some higher orders through judicious use of a sat solver.


Verlagsausgabe §
DOI: 10.5445/IR/1000188634
Veröffentlicht am 15.12.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Theoretische Teilchenphysik (TTP)
Publikationstyp Zeitschriftenaufsatz
Publikationsdatum 25.11.2025
Sprache Englisch
Identifikator ISSN: 1877-0509
KITopen-ID: 1000188634
Erschienen in Procedia Computer Science
Verlag Elsevier
Band 273
Seiten 22 - 29
Bemerkung zur Veröffentlichung XIII Latin American Algorithms, Graphs, and Optimization Symposium (LAGOS 2025), Buenos Aires, 10th–14th November, 2025
Nachgewiesen in Scopus
OpenAlex
Dimensions
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page