KIT | KIT-Bibliothek | Impressum | Datenschutz

Far field operator splitting by principal component pursuit

Griesmaier, Roland 1; Schätzle, Lisa
1 Institut für Angewandte und Numerische Mathematik (IANM), Karlsruher Institut für Technologie (KIT)

Abstract:

We consider scattering of time-harmonic plane waves by an ensemble of well-separated compactly supported inhomogeneous scatterers. The far field operator, which maps superpositions of plane wave incident fields to the far field patterns of the associated scattered fields, is commonly used as an idealized description of data sets obtained in corresponding remote sensing experiments. Suppose that some a priori information about the approximate position of just one of the scatterers in the ensemble is available. This article is about recovering the far field operator associated to this single scatterer from the far field operator associated to the whole collection of scatterers. Due to multiple scattering effects this is a nonlinear inverse problem. We show that an approximate solution can be obtained by decomposing the far field operator into a sparse component and a low-rank component, and we apply a convex program called principal component pursuit for this purpose. We give necessary and sufficient conditions for unique solvability, establish a stability result and provide numerical examples to illustrate our theoretical findings.


Volltext §
DOI: 10.5445/IR/1000188646
Veröffentlicht am 15.12.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte und Numerische Mathematik (IANM)
Sonderforschungsbereich 1173 (SFB 1173)
Publikationstyp Forschungsbericht/Preprint
Publikationsmonat/-jahr 12.2025
Sprache Englisch
Identifikator ISSN: 2365-662X
KITopen-ID: 1000188646
Verlag Karlsruher Institut für Technologie (KIT)
Umfang 21 S.
Serie CRC 1173 Preprint ; 2025/53
Externe Relationen Siehe auch
Forschungsdaten/Software
Schlagwörter iInverse medium scattering, Helmholtz equation, far field operator splitting, principal component pursuit
Nachgewiesen in OpenAlex
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page