KIT | KIT-Bibliothek | Impressum | Datenschutz

Asymptotic independence in more than two dimensions and its implications on risk management

Das, Bikramjit; Fasen-Hartmann, Vicky ORCID iD icon 1
1 Institut für Stochastik (STOCH), Karlsruher Institut für Technologie (KIT)

Abstract:

In extreme value theory, the presence of asymptotic independence signifies that joint extreme events across multiple variables are unlikely. Although well understood in a bivariate context, the concept remains relatively unexplored when addressing the nuances of simultaneous occurrence of extremes in higher dimensions. In this article, we propose a notion of mutual asymptotic independence to capture the behaviour of joint extremes in dimensions larger than two and contrast it with the classical notion of (pairwise) asymptotic independence. Additionally, we define -wise asymptotic independence, which captures the tail dependence in between pairwise and mutual asymptotic independence. The concepts are compared using examples of Archimedean, Gaussian, and Marshall–Olkin copulas, among others. Finally, we discuss the implications of these new notions of asymptotic independence on assessing the risk in complex systems under distributional ambiguity.


Verlagsausgabe §
DOI: 10.5445/IR/1000188672
Veröffentlicht am 15.12.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Stochastik (STOCH)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2025
Sprache Englisch
Identifikator ISSN: 0319-5724, 1708-945X
KITopen-ID: 1000188672
Erschienen in Canadian Journal of Statistics
Verlag John Wiley and Sons
Seiten Art.-Nr.: e70036
Vorab online veröffentlicht am 12.12.2025
Nachgewiesen in OpenAlex
Scopus
Dimensions
Web of Science
Relationen in KITopen
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page