KIT | KIT-Bibliothek | Impressum | Datenschutz

Global solutions to nonconservative NLS with non-decaying initial data

Hirsch, Rafael 1; Kunstmann, Peer ORCID iD icon 1
1 Institut für Analysis (IANA), Karlsruher Institut für Technologie (KIT)

Abstract:

We investigate the long-time behavior of solutions to nonconservative nonlinear Schrödinger equations (NLS) of the form

i∂$_t$u = −∂$^2_x$u − u$^p$, p ∈ N, p ≥ 2.

We focus on initial data that are neither localized nor periodic. Our approach is based on the work [13] by Jaquette, Lessard and Takayasu, where they used a perturbative analysis around the explicit spatially homogeneous solution of the associated ODE. Using their methods, we establish global existence results and asymptotic decay of solutions in a general Banach algebra setting. Applications include small data global well-posedness results for almost periodic initial data, which seem to be the first in a nonconservative NLS framework. Applications to (almost) periodic initial data with localized perturbations are also presented.


Verlagsausgabe §
DOI: 10.5445/IR/1000188730
Veröffentlicht am 16.12.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Analysis (IANA)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 04.2026
Sprache Englisch
Identifikator ISSN: 0022-247X
KITopen-ID: 1000188730
Erschienen in Journal of Mathematical Analysis and Applications
Verlag Elsevier
Band 556
Heft 2
Seiten 130260
Schlagwörter Nonlinear Schrödinger equations, Nonconservative evolution equations, Global well-posedness, Asymptotic decay, Almost periodic functions, Non-decaying initial data
Nachgewiesen in Scopus
Web of Science
OpenAlex
Dimensions
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page