KIT | KIT-Bibliothek | Impressum | Datenschutz

Enhancing Solid Oxide Fuel Cells Development through Bayesian Active Learning

Jeela, R. K. ; Tosato, G. 1; Ahmad, M.; Wieler, M.; Koeppe, A. ORCID iD icon 1; Nestler, B. 1,2; Schneider, D. ORCID iD icon 1,2
1 Institut für Angewandte Materialien – Mikrostruktur-Modellierung und Simulation (IAM-MMS), Karlsruher Institut für Technologie (KIT)
2 Institut für Nanotechnologie (INT), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

Ensuring the sustainable operation of solid-oxide fuel cells (SOFCs) requires an understanding of the components' lifespan. Multiphase-field simulation studies play a major role in understanding the underlying microstructural changes and the resulting property alterations in SOFCs over time. The primary challenge in such simulations lies in identifying a suitable model and defining its parametrization. This study presents an Active Learning framework combined with Bayesian Optimization to identify optimal model parameters to simulate the aging of nickel-gadolinium doped ceria (Ni-GDC) anodes. The study overcomes incompleteness and inconsistency of literature data, and navigates the complex, high-dimensional parameter space, by leveraging experimental microstructure data and the power of the AL framework. The successful parameter search enables simulation studies of Ni-GDC anode aging and performance during long-term SOFC operation. This approach improves the accuracy of phase-field simulations and offers a versatile tool for broader applications in SOFC development, predicting material behavior under various operational conditions.


Verlagsausgabe §
DOI: 10.5445/IR/1000188847
Veröffentlicht am 17.12.2025
Originalveröffentlichung
DOI: 10.1002/aenm.202501216
Scopus
Zitationen: 2
Web of Science
Zitationen: 1
Dimensions
Zitationen: 2
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Nanotechnologie (INT)
Institut für Angewandte Materialien – Mikrostruktur-Modellierung und Simulation (IAM-MMS)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 09.2025
Sprache Englisch
Identifikator ISSN: 1614-6832, 1614-6840
KITopen-ID: 1000188847
HGF-Programm 38.02.01 (POF IV, LK 01) Fundamentals and Materials
Erschienen in Advanced Energy Materials
Verlag Wiley-VCH Verlag
Band 15
Heft 34
Vorab online veröffentlicht am 02.07.2025
Schlagwörter active learning, Bayesian optimization, coarsening, Kadi4Mat, KadiAI, phase-field modeling, solid-oxide fuel cells
Nachgewiesen in OpenAlex
Dimensions
Scopus
Web of Science
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page