KIT | KIT-Bibliothek | Impressum | Datenschutz

Modelling Volatility Cycles: The MF2‐GARCH Model

Conrad, Christian 1; Engle, Robert F.
1 Heidelberg Karlsruhe Strategic Partnership (HEiKA), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

We propose a novel multiplicative factor multi-frequency GARCH (MF2-GARCH) model, which exploits the empirical fact that the daily standardized forecast errors of one-component GARCH models are predictable by a moving average of past standardized forecast errors. In contrast to other multiplicative component GARCH models, the MF2-GARCH features stationary returns, and long-term volatility forecasts are mean-reverting. When applied to the S&P 500, the new component model significantly outperforms the one-component GJR-GARCH, the GARCH-MIDAS-RV, and the log-HAR model in long-term out-of-sample forecasting. We illustrate the MF2-GARCH's scalability by applying the new model to more than 2100 individual stocks in the Volatility Lab at NYU Stern.


Verlagsausgabe §
DOI: 10.5445/IR/1000189003
Veröffentlicht am 18.12.2025
Originalveröffentlichung
DOI: 10.1002/jae.3118
Scopus
Zitationen: 2
Web of Science
Zitationen: 1
Dimensions
Zitationen: 2
Cover der Publikation
Zugehörige Institution(en) am KIT Heidelberg Karlsruhe Strategic Partnership (HEiKA)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 06.2025
Sprache Englisch
Identifikator ISSN: 0883-7252, 1099-1255
KITopen-ID: 1000189003
Erschienen in Journal of Applied Econometrics
Verlag John Wiley and Sons
Band 40
Heft 4
Seiten 438–454
Vorab online veröffentlicht am 24.02.2025
Schlagwörter long- and short-term volatility, long-term forecasting, mixed frequency data, volatility component models, volatility forecasting
Nachgewiesen in OpenAlex
Dimensions
Web of Science
Scopus
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page