KIT | KIT-Bibliothek | Impressum | Datenschutz

Time-integration of Gaussian variational approximation for the magnetic Schrödinger equation

Scheifinger, Malik 1; Busch, Kurt; Hochbruck, Marlis 1; Lasser, Caroline
1 Institut für Angewandte und Numerische Mathematik (IANM), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

In the present paper we consider the semiclassical magnetic Schrödinger equation, which describes the dynamics of charged particles under the influence of an electro-magnetic field. The solution of the time-dependent Schrödinger equation is approximated by a single Gaussian wave packet via the time-dependent Dirac–Frenkel variational principle. For the approximation we use ordinary differential equations of motion for the parameters of the variational solution and extend the second-order Boris algorithm for classical mechanics to the quantum mechanical case. In addition, we propose a modified version of the classical fourth-order Runge–Kutta method. Numerical experiments explore parameter convergence and geometric properties. Moreover, we benchmark against the analytical solution of the Penning trap.


Verlagsausgabe §
DOI: 10.5445/IR/1000189037
Veröffentlicht am 18.12.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte und Numerische Mathematik (IANM)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 11.2025
Sprache Englisch
Identifikator ISSN: 0021-9991
KITopen-ID: 1000189037
Erschienen in Journal of Computational Physics
Verlag Elsevier
Band 541
Seiten 114349
Schlagwörter Gaussian wave packets, Semiclassical magnetic Schrödinger equation, Time-dependent variational approximation, Mesh-free method, Boris algorithm, Runge–Kutta, Penning trap
Nachgewiesen in Scopus
OpenAlex
Dimensions
Web of Science
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page