KIT | KIT-Bibliothek | Impressum | Datenschutz

Arbitrary order approximations at constant cost for Timoshenko beam network models

Hauck, Moritz 1; Målqvist, Axel; Rupp, Andreas
1 Institut für Angewandte und Numerische Mathematik (IANM), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

This paper considers the numerical solution of Timoshenko beam network models, comprised of Timoshenko beam equations on each edge of the network, which are coupled at the nodes of the network using rigid joint conditions. Through hybridization, we can equivalently reformulate the problem as a symmetric positive definite system of linear equations posed on the network nodes. This is possible since the nodes, where the beam equations are coupled, are zero-dimensional objects. To discretize the beam network model, we propose a hybridizable discontinuous Galerkin method that can achieve arbitrary orders of convergence under mesh refinement without increasing the size of the global system matrix. As a preconditioner for the typically very poorly conditioned global system matrix, we employ a two-level overlapping additive Schwarz method. We prove uniform convergence of the corresponding preconditioned conjugate gradient method under appropriate connectivity assumptions on the network. Numerical experiments support the theoretical findings of this work.


Verlagsausgabe §
DOI: 10.5445/IR/1000189071
Veröffentlicht am 19.12.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte und Numerische Mathematik (IANM)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 11.2025
Sprache Englisch
Identifikator ISSN: 2822-7840, 0764-583X, 1290-3841, 2804-7214
KITopen-ID: 1000189071
Erschienen in ESAIM: Mathematical Modelling and Numerical Analysis
Verlag EDP Sciences
Band 59
Heft 6
Seiten 3107 - 3130
Vorab online veröffentlicht am 17.11.2025
Schlagwörter Timoshenko beam network, elastic graph, hybridizable discontinuous Galerkin, arbitrary order approximation, a priori error analysis, additive Schwarz preconditioner
Nachgewiesen in OpenAlex
Web of Science
Scopus
Dimensions
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page