KIT | KIT-Bibliothek | Impressum | Datenschutz

Nonlinear stability of periodic wave trains in the FitzHugh-Nagumo system against fully nonlocalized perturbations

Alexopoulos, Joannis 1; de Rijk, Björn
1 Fakultät für Mathematik (MATH), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

Recently, a nonlinear stability theory has been developed for wave trains in reaction-diffusion systems relying on pure L$^∞$-estimates. In the absence of localization of perturbations, it exploits diffusive decay caused by smoothing together with spatio-temporal phase modulation. In this paper, we advance this theory beyond the parabolic setting and propose a scheme designed for general dissipative semilinear problems. We present our method in the context of the FitzHugh-Nagumo system. The lack of parabolicity and localization complicates mode filtration in L$^∞$-spaces using the Floquet-Bloch transform. Instead, we employ the inverse Laplace representation of the semigroup generated by the linearization to uncover high-frequency damping, while leveraging a link to the Floquet-Bloch representation for the smoothing low-frequency part. Another challenge arises in controlling regularity in the quasilinear iteration scheme for the modulated perturbation. We address this by extending the method of nonlinear damping estimates to nonlocalized perturbations using uniformly local Sobolev norms.


Verlagsausgabe §
DOI: 10.5445/IR/1000189151
Veröffentlicht am 19.12.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Fakultät für Mathematik (MATH)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 03.2026
Sprache Englisch
Identifikator ISSN: 0022-0396, 1090-2732
KITopen-ID: 1000189151
Erschienen in Journal of Differential Equations
Verlag Elsevier
Band 457
Seiten 114013
Schlagwörter Periodic waves, Nonlinear stability, Fully nonlocalized perturbations, FitzHugh-Nagumo system, Inverse Laplace transform, Uniformly local Sobolev spaces
Nachgewiesen in OpenAlex
Scopus
Dimensions
Web of Science
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page