KIT | KIT-Bibliothek | Impressum | Datenschutz

Boundary Value Problems for p-Adic Elliptic Parisi-Zúñiga Diffusion

Bradley, Patrick Erik ORCID iD icon 1,2
1 Institut für Photogrammetrie und Fernerkundung (IPF), Karlsruher Institut für Technologie (KIT)
2 Geodätisches Institut (GIK), Karlsruher Institut für Technologie (KIT)

Abstract:

Elliptic integral-differential operators resembling the classical elliptic partial differential equations are defined over a compact d-dimensional p-adic domain, together with associated Sobolev spaces relying on coordinate Vladimirov-type Laplacians dating back to an idea of Wilson Zúñiga-Galindo in his previous work. The associated Poisson equations under boundary conditions are solved and their L$^{2}$-spectra are determined. Under certain finiteness conditions, a Markov semigroup acting on the Sobolev spaces which are also Hilbert spaces can be associated with such an operator and the boundary condition. It is shown that this also has an explicitly given heat kernel as an L$^{2}$-function, which allows a Green function to be derived from it.


Verlagsausgabe §
DOI: 10.5445/IR/1000189356
Veröffentlicht am 07.01.2026
Originalveröffentlichung
DOI: 10.1007/s11868-025-00760-0
Cover der Publikation
Zugehörige Institution(en) am KIT Geodätisches Institut (GIK)
Institut für Photogrammetrie und Fernerkundung (IPF)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 03.2026
Sprache Englisch
Identifikator ISSN: 1662-9981, 1662-999X
KITopen-ID: 1000189356
Erschienen in Journal of Pseudo-Differential Operators and Applications
Verlag Springer
Band 17
Heft 1
Seiten 9
Projektinformation 469999674 (DFG, DFG EIN, BR 2128/21-1)
469999674 (DFG, DFG EIN, BR 3513/14-1)
Vorab online veröffentlicht am 07.01.2026
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page