KIT | KIT-Bibliothek | Impressum | Datenschutz

Existence of traveling breather solutions to cubic nonlinear Maxwell equations in waveguide geometries

Ohrem, Sebastian 1; Reichel, Wolfgang 1
1 Institut für Analysis (IANA), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

We consider the full set of Maxwell equations in a slab or cylindrical waveguide with a cubically nonlinear material law for the polarization of the electric field. The nonlinear polarization may be instantaneous or retarded, and we assume it to be confined inside the core of the waveguide. We prove existence of infinitely many spatially localized, real-valued and time-periodic solutions (breathers) propagating inside the waveguide by applying a variational minimization method to the resulting scalar quasilinear elliptic-hyperbolic equation for the profile of the breathers. The temporal period of the breathers has to be carefully chosen depending on the linear properties of the waveguide. As an example, our results apply if a two-layered linear axisymmetric waveguide is enhanced by a third core region with low refractive index where also the nonlinearity is located. In this case we can also connect our existence result with a bifurcation result. We illustrate our results with numerical simulations. Our solutions are polychromatic functions in general, but for some special models of retarded nonlinear material laws, also monochromatic solutions can exist. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000189367
Veröffentlicht am 07.01.2026
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Analysis (IANA)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 01.2026
Sprache Englisch
Identifikator ISSN: 0944-2669, 1432-0835
KITopen-ID: 1000189367
Erschienen in Calculus of Variations and Partial Differential Equations
Verlag Springer
Band 65
Heft 1
Seiten 35
Vorab online veröffentlicht am 13.12.2025
Nachgewiesen in OpenAlex
Web of Science
Dimensions
Scopus
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page