KIT | KIT-Bibliothek | Impressum | Datenschutz

Operational Convection‐Permitting COSMO/ICON Ensemble Predictions at Observation Sites ( CIENS )

Lerch, Sebastian ORCID iD icon 1,2; Schulz, Benedikt ORCID iD icon 2,3; Hess, Reinhold; Möller, Annette; Primo, Cristina; Trepte, Sebastian; Theis, Susanne
1 Institut für Volkswirtschaftslehre (ECON), Karlsruher Institut für Technologie (KIT)
2 Institut für Statistik (STAT), Karlsruher Institut für Technologie (KIT)
3 Institut für Stochastik (STOCH), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

We present the CIENS dataset, which contains ensemble weather forecasts from the operational convection-permitting numerical weather prediction model of the German Weather Service. It comprises forecasts for 55 meteorological variables mapped to the locations of synoptic stations, as well as additional spatially aggregated forecasts from surrounding grid points, available for a subset of these variables. Forecasts are available at hourly lead times from 0 to 21 h for two daily model runs initialised at 00 and 12 UTC, covering the period from December 2010 to June 2023. Additionally, the dataset provides station observations for six key variables at 170 locations across Germany: pressure, temperature, hourly precipitation accumulation, wind speed, wind direction, and wind gusts. Since the forecasts are mapped to the observed locations, the data is delivered in a convenient format for analysis. The CIENS dataset complements the growing collection of benchmark datasets for weather and climate modelling. A key distinguishing feature is its long temporal extent, which encompasses multiple updates to the underlying numerical weather prediction model and thus supports investigations into how forecasting methods can account for such changes. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000189407
Veröffentlicht am 08.01.2026
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Stochastik (STOCH)
Institut für Volkswirtschaftslehre (ECON)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 01.2026
Sprache Englisch
Identifikator ISSN: 2049-6060
KITopen-ID: 1000189407
Erschienen in Geoscience Data Journal
Verlag Wiley Open Access
Band 13
Heft 1
Vorab online veröffentlicht am 28.12.2025
Schlagwörter ensemble prediction, post-processing, probabilistic forecasting, station observations
Nachgewiesen in OpenAlex
Web of Science
Dimensions
Scopus
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page