KIT | KIT-Bibliothek | Impressum | Datenschutz

Error analysis of tailor-made time integration schemes for certain classes of wave-type equations

Burkhard, Selina ORCID iD icon

Abstract (englisch):

This thesis is concerned with the time integration of three classes of wave-type partial differential equations. Each of these equations has numerical challenges, including nonlocal-in-time material laws, nontrivial boundary conditions, and an unbounded spatial domain. We construct tailor-made schemes and provide a rigorous numerical analysis.

We consider the semiclassical magnetic Schrödinger equation on the full space $\mathbb{R}^d$ with possibly time-dependent magnetic and electric potentials. For the approximation we use an appropriate Gaussian ansatz function, which leads to a set of ordinary differential equations. We show that in a special case, this ansatz function is the exact solution to the magnetic Schrödinger equation. Furthermore, we provide error bounds with respect to the semiclassical parameter in $L^2$-norm and we improve the error bound for relevant physical quantities of interest.

The second setting is concerned with a scattering problem for Maxwell's equations on an unbounded domain. The scatterer consists of a nonlocal-in-time material, which is modeled as a convolution in Maxwell's equations. In this situation, we use a coupling on the scatterer's bounded interface and derive a boundary integral equation. ... mehr


Volltext §
DOI: 10.5445/IR/1000189462
Veröffentlicht am 14.01.2026
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Analysis (IANA)
Institut für Angewandte und Numerische Mathematik (IANM)
Publikationstyp Hochschulschrift
Publikationsdatum 14.01.2026
Sprache Englisch
Identifikator KITopen-ID: 1000189462
Verlag Karlsruher Institut für Technologie (KIT)
Umfang v, 118 S.
Art der Arbeit Dissertation
Fakultät Fakultät für Mathematik (MATH)
Institut Institut für Angewandte und Numerische Mathematik (IANM)
Prüfungsdatum 18.12.2025
Projektinformation SFB 1173, 258734477 (DFG, DFG KOORD, SFB 1173/3)
Externe Relationen Forschungsdaten/Software
Forschungsdaten/Software
Schlagwörter magnetic Schrödinger equation, semiclassical analysis, variational approximation, observables, electromagnetic scattering, dispersive material laws, time-dependent partial differential equations, convolution quadrature, boundary element method, implicit-explicit time integration, IMEX, kinetic boundary condition, nonlocal material laws, auxiliary differential equation, semilinear wave equation
Relationen in KITopen
Referent/Betreuer Hochbruck, Marlis
Schnaubelt, Roland
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page