KIT | KIT-Bibliothek | Impressum | Datenschutz

Gaussian Process Regression for System Identification of Autonomous Surface Vessels

Bartels, Sönke 1; Meurer, Thomas ORCID iD icon 1
1 Institut für Mechanische Verfahrenstechnik und Mechanik (MVM), Karlsruher Institut für Technologie (KIT)

Abstract:

Autonomous surface vehicles (ASVs) have gained significant attention across a range of applications, yet a primary challenge lies in developing accurate mathematical models to describe their complex dynamical behavior. Given the partial submersion of surface vessels in water, deriving a first-principles description proves difficult. In general, data-driven approaches, particularly black-box and gray-box models, are increasingly employed to avoid the need of structural first-principle models. Among the range of supervised learning approaches, Gaussian Process Regression (GPR) models stand out due to their simplistic and nonparametric nature. This paper presents an approach to modeling the dynamics of surface vessels using GPRs. The work outlines the process of generating synthetic data, training the GPR model, and applying it to the vessel maneuvers of path-following and dynamic positioning.


Verlagsausgabe §
DOI: 10.5445/IR/1000189480
Veröffentlicht am 09.01.2026
Originalveröffentlichung
DOI: 10.1016/j.ifacol.2025.11.713
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Mechanische Verfahrenstechnik und Mechanik (MVM)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2025
Sprache Englisch
Identifikator ISSN: 2405-8963
KITopen-ID: 1000189480
Erschienen in IFAC-PapersOnLine
Verlag International Federation of Automatic Control (IFAC)
Band 59
Heft 22
Seiten 681 - 686
Bemerkung zur Veröffentlichung Part of special issue: 16th IFAC Conference on Control Applications in Marine Systems, Robotics and Vehicles CAMS 2025

Wuhan, China, August 25-28, 2025
Vorab online veröffentlicht am 04.12.2025
Schlagwörter Gaussian processes, autonomous surface vehicle, autonomous surface vessel, optimal control, data based modeling
Nachgewiesen in OpenAlex
Scopus
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page