KIT | KIT-Bibliothek | Impressum | Datenschutz

Using Synthetic Data and Artificial Intelligence for Optimizing Tillage Process Quality Measurement​

Schulpius, Silko; Graf, Marina ORCID iD icon 1; Stirnkorb, Tom; Frerichs, Ludger; Geimer, Marcus ORCID iD icon
1 Institut für Fahrzeugsystemtechnik (FAST), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

Automation in agriculture enhances efficiency and productivity. Taking tillage as an example, driving tasks such as steering and speed control are already highly automated, shifting the focus toward automating the tillage process itself. Measuring crop residue coverage - a key factor for erosion resistance, soil structure, and moisture - with semantic segmentation of camera images requires large, accurately annotated datasets. Manual annotation is time-consuming, error-prone, and challenging due to the fine structures of straw and the indistinct boundaries of soil aggregates. To overcome these issues, synthetic training data were generated using the modeling software Blender to model soil textures, residue distributions, and environmental conditions. Photorealism was subsequently enhanced through the machine learning method ControlNet. The approach was evaluated and tested using three datasets - real-world, Blender-generated, and ControlNet-generated - assessed with the mean Intersection over Union (mIoU) and Fréchet Inception Distance (FID) metrics. A semantic segmentation network, PIDNet, trained on real-world data, achieved an mIoU of 75.0 %. ... mehr


Zugehörige Institution(en) am KIT Institut für Fahrzeugsystemtechnik (FAST)
Publikationstyp Proceedingsbeitrag
Publikationsdatum 07.11.2025
Sprache Englisch
Identifikator ISBN: 978-3-18-092465-6
ISSN: 0083-5560
KITopen-ID: 1000189523
Erschienen in LAND.TECHNIK AgEng 2025 - The Forum for Agricultural Engineering Innovations
Veranstaltung 82. Internationale Tagung Landtechnik LAND.TECHNIK (2025), Hannover, Deutschland, 07.11.2025 – 08.11.2025
Verlag VDI-Wissensforum
Seiten 413-419
Serie VDI Berichte ; 2465
Schlagwörter Agricultural Automation, Residue Coverage, Semantic Segmentation, ControlNet
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page