KIT | KIT-Bibliothek | Impressum | Datenschutz

WHAR Datasets: An Open Source Library for Wearable Human Activity Recognition

Burzer, Maximilian ORCID iD icon 1; King, Tobias 1; Riedel, Till ORCID iD icon 1; Beigl, Michael ORCID iD icon 1; Röddiger, Tobias ORCID iD icon 1
1 Institut für Telematik (TM), Karlsruher Institut für Technologie (KIT)

Abstract:

The lack of standardization across Wearable Human Activity Recognition (WHAR) datasets limits reproducibility, comparability, and research efficiency. We introduce WHAR datasets, an open-source library designed to simplify WHAR data handling through a standardized data format and a configuration-driven design, enabling reproducible and computationally efficient workflows with minimal manual intervention. The library currently supports 9 widely-used datasets, integrates with PyTorch and TensorFlow, and is easily extensible to new datasets. To demonstrate its utility, we trained two state-of-the-art models, TinyHar and MLP-HAR, on the included datasets, approximately reproducing published results and validating the library's effectiveness for experimentation and benchmarking. Additionally, we evaluated preprocessing performance and observed speedups of up to 3.8x using multiprocessing. We hope this library contributes to more efficient, reproducible, and comparable WHAR research.


Volltext §
DOI: 10.5445/IR/1000189623
Veröffentlicht am 14.01.2026
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Telematik (TM)
Publikationstyp Forschungsbericht/Preprint
Publikationsjahr 2025
Sprache Englisch
Identifikator KITopen-ID: 1000189623
Verlag arxiv
Umfang 8 S.
Schlagwörter Human-Computer Interaction (cs.HC), Machine Learning (cs.LG), I.2.6
Nachgewiesen in OpenAlex
arXiv
Dimensions
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page