KIT | KIT-Bibliothek | Impressum | Datenschutz

Special Sessions - Hardware-Software Co-Design for Machine Learning Systems Made Open-Source

Tahoori, Mehdi 1; Meyers, Vincent 1; Sadeghipour Roodsari, Mahboobe 1; Xu, Huashuangyang 1; Becker, Juergen 2; Harbaum, Tanja 2; Frombach, Felix 2; Hoefer, Julian ORCID iD icon 2; Sotiropoulos, Georgios 2; Henkel, Jorg 1; Demirdag, Zeynep 1; Khdr, Heba ORCID iD icon 1; Nassar, Hassan ORCID iD icon 1; Schlichtmann, Ulf; Geier, Johannes; van Kempen, Philipp; Sigl, Georg; Koegler, Stefan; Probst, Matthias; ... mehr

Abstract (englisch):

Chip technologies are crucial for the digital transformation of industry and society. Machine Learning (ML) and Artificial Intelligence (AI) are increasingly shaping both daily life and industrial applications, with AI hardware playing a vital role in enabling efficient and scalable ML deployment. However, significant challenges remain in bridging the gap between ML algorithm development and hardware implementation, particularly for edge ML applications where efficiency, power constraints, and adaptability are critical. In such resource-constrained environments, hardware-software co-design becomes essential to achieve the necessary trade-offs between performance, energy efficiency, and system responsiveness. One of the key bottlenecks in ML hardware development is the lack of seamless integration between ML toolchains and electronic design automation (EDA) tools for hardware synthesis and mapping. Current solutions often require extensive manual optimization and costly proprietary software, limiting accessibility and innovation. Open-source tools can play a transformative role in democratizing ML hardware design, fostering collaboration, and addressing the growing shortage of skilled professionals. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000189676
Veröffentlicht am 15.01.2026
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Technik der Informationsverarbeitung (ITIV)
Institut für Technische Informatik (ITEC)
Publikationstyp Proceedingsbeitrag
Publikationsdatum 28.09.2025
Sprache Englisch
Identifikator ISBN: 979-8-4007-1992-9
KITopen-ID: 1000189676
Erschienen in Proceedings of the International Conference on Hardware/Software Codesign and System Synthesis; Taipeh, Taiwan, 28.09.-03.10.2025
Veranstaltung ESWEEK: Embedded Systems Week (2025), Taipeh, Taiwan, 28.09.2025 – 03.10.2025
Verlag Association for Computing Machinery (ACM)
Seiten 23–32
Schlagwörter Hardware-software co-design, Machine learning
Nachgewiesen in Scopus
OpenAlex
Dimensions
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page