KIT | KIT-Bibliothek | Impressum | Datenschutz

Bayesian experimental design in production engineering: a comprehensive performance and robustness study

Leyendecker, Lars ; Gonzalez Degetau, Ana Maria; Bata, Katharina ORCID iD icon 1; Emonts, Jessica; Schmitz, Angela; Schmitt, Robert H.
1 Scientific Computing Center (SCC), Karlsruher Institut für Technologie (KIT)

Abstract:

In production engineering, the identification of optimal process parameters is essential to advance product quality and overall equipment effectiveness. Optimizing and adapting process parameters through experimental design is relevant for different phases of the life cycle of a production process: (i) design and development of new processes, (ii) failure analysis and optimization, and (iii) adaptation and calibration in series production. Existing experimental design approaches tend to be inefficient because they comprise static, non-adaptive methodologies that separate experiment design from execution and analysis. Instead, Bayesian Optimization (BO) offers an adaptive and data-efficient methodology for experimental design termed Bayesian experimental design (BED). In BED, the selection of an experiment is re-evaluated in each iteration based on previous experiment results according to an acquisition function that aims to maximize the informational content of each experiment. However, the configuration of BO algorithms for specific optimization problems requires extensive knowledge of both BO and process characteristics. The mean and covariance functions of the surrogate model, the acquisition function, and initial data sampling must be individually configured and significantly influence overall optimization performance, preventing widespread adoption in production engineering practice. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000189695
Veröffentlicht am 16.01.2026
Originalveröffentlichung
DOI: 10.3389/fmtec.2025.1614335
Cover der Publikation
Zugehörige Institution(en) am KIT Scientific Computing Center (SCC)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 01.2026
Sprache Englisch
Identifikator ISSN: 2813-0359
KITopen-ID: 1000189695
HGF-Programm 46.21.02 (POF IV, LK 01) Cross-Domain ATMLs and Research Groups
Erschienen in Frontiers in Manufacturing Technology
Verlag Frontiers Media SA
Band 5
Seiten 1614335
Vorab online veröffentlicht am 08.01.2026
Nachgewiesen in OpenAlex
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page