KIT | KIT-Bibliothek | Impressum | Datenschutz

Joint Geometric and Probabilistic Constellation Shaping with MOKka

Rode, Andrej 1; Chimmalgi, Shrinivas 1; Geiger, Benedikt 1; Schmalen, Laurent 1
1 Communications Engineering Lab (CEL), Karlsruher Institut für Technologie (KIT)

Abstract:

Machine learning for optimization of the physical layer is currently a popular research topic. To aid research in this field, we introduce our Python library MOKka. We summarize the currently available signal processing modules in the library and explain our design rationale. In order to showcase the utility of this library, we have implemented a demo on joint geometric and probabilistic constellation shaping with a switchable channel model and interactive plotting and controls.


Volltext §
DOI: 10.5445/IR/1000189897
Veröffentlicht am 23.01.2026
Originalveröffentlichung
DOI: 10.36227/techrxiv.172262862.20758603/v1
Cover der Publikation
Zugehörige Institution(en) am KIT Communications Engineering Lab (CEL)
Publikationstyp Forschungsbericht/Preprint
Publikationsjahr 2024
Sprache Englisch
Identifikator KITopen-ID: 1000189897
Verlag Institute of Electrical and Electronics Engineers (IEEE)
Umfang 2 S.
Bemerkung zur Veröffentlichung IEEE International Conference on Machine Learning for Communication and Networking (ICMLCN), Stockholm, Sweden, 5–8 May 2024, Demo session
Vorab online veröffentlicht am 02.08.2024
Nachgewiesen in OpenAlex
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page