KIT | KIT-Bibliothek | Impressum | Datenschutz

Automated extraction of comprehensive digital twin models for smart manufacturing systems

Khodadadi, Atieh ORCID iD icon 1; Lazarova-Molnar, Sanja ORCID iD icon 1
1 Institut für Angewandte Informatik und Formale Beschreibungsverfahren (AIFB), Karlsruher Institut für Technologie (KIT)

Abstract:

Manufacturing systems involve multiple, often conflicting, objectives referred to as performance indicators,
including production efficiency, resource utilization, energy consumption, carbon emissions, and waste reduc-
tion, which correspond to different dimensions of the system, such as time, energy consumption, and waste
generation aspects. Digital Twins have emerged as a powerful tool, integrating data-driven simulation and
analysis of complex systems, such as manufacturing systems. Process Mining (PM), along with data analysis,
enables the automatic discovery of executable discrete-event simulation models directly from production event
logs. These data-driven models are the key to enabling near-real-time Digital Twins of discrete-event systems.
Stochastic Petri Nets (SPNs) offer a robust and intuitive modeling formalism well-suited for representing the
extracted models derived from PM, particularly in the context of manufacturing systems. However, standard
SPNs face challenges in incorporating dimensions beyond time, such as energy consumption and waste gener-
ation. This limitation often results in suboptimal decision-making and reduced system efficiency. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000189929
Veröffentlicht am 26.01.2026
Originalveröffentlichung
DOI: 10.1016/j.jmsy.2026.01.012
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte Informatik und Formale Beschreibungsverfahren (AIFB)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 04.2026
Sprache Englisch
Identifikator ISSN: 0278-6125
KITopen-ID: 1000189929
Erschienen in Journal of Manufacturing Systems
Verlag Elsevier
Band 85
Seiten 287–306
Schlagwörter Comprehensive Digital Twins, Smart Manufacturing Systems, Data-driven Simulation Model Extraction, Multi-flow Process Mining, Petri Nets, Industry 4.0, Sustainability, Energy Efficiency, Waste Management, Multi-Objective Optimizatio
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page