KIT | KIT-Bibliothek | Impressum | Datenschutz

Identifying optimal locations for automated external defibrillators (AED) in Freiburg: development and validation of a machine learning model based on demographic and infrastructural data

Ganter, Julian; Bakker, Hannah ORCID iD icon 1; Nickel, Stefan 1; Reichling, Elisa-Sophie 2; Wittmer, Alicia; Werner, Niklas 3; Brucklacher, Thomas; Wunderlich, Robert; Trummer, Georg; Busch, Hans-Jörg; Müller, Michael Patrick
1 Institut für Operations Research (IOR), Karlsruher Institut für Technologie (KIT)
2 Karlsruhe Service Research Institute (KSRI), Karlsruher Institut für Technologie (KIT)
3 Institut für Mechanische Verfahrenstechnik und Mechanik (MVM), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

Introduction
Out-of-hospital cardiac arrest (OHCA) is a critical medical emergency where rapid access to automated external defibrillators (AED) can significantly improve survival rates. However, there is currently a lack of well-established frameworks and guidelines concerning the optimal placement of AED. Additionally, historical data on the locations of OHCA incidents is often unavailable or incomplete. This study seeks to address these gaps by analyzing the most effective AED placement strategies and evaluating the impact of additional AED locations on suspected OHCA cases. To achieve this, a machine learning (ML) model is developed that relies exclusively on demographic and infrastructural factors, without the need for historical OHCA location data.

Methods
In this data-driven predictive modelling study, 5,076 alerts of suspected OHCA and 95 AED locations in Freiburg were analysed (October 7, 2018, to May 28, 2024). Demographic and infrastructural data were integrated into a three-step approach to identify and prioritize optimal AED placements. A Decision Tree was trained to predict OHCA risk at possible locations, followed by the application of a greedy algorithm to determine AED locations. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000189989
Veröffentlicht am 27.01.2026
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Mechanische Verfahrenstechnik und Mechanik (MVM)
Institut für Operations Research (IOR)
Karlsruhe Service Research Institute (KSRI)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2025
Sprache Englisch
Identifikator ISSN: 1471-227X
KITopen-ID: 1000189989
Erschienen in BMC Emergency Medicine
Verlag Springer Fachmedien Wiesbaden
Band 26
Heft 1
Seiten 19
Vorab online veröffentlicht am 13.12.2025
Schlagwörter First responder, Smartphone alerting systems, Out-of-hospital cardiac arrest, Automated external, defibrillator, Public access defibrillation, Dispatch centre
Nachgewiesen in Web of Science
OpenAlex
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page