KIT | KIT-Bibliothek | Impressum | Datenschutz

Discrete gradient methods for port-Hamiltonian differential-algebraic equations

Kinon, Philipp L. ORCID iD icon 1; Morandin, Riccardo ; Schulze, Philipp
1 Institut für Mechanik (IFM), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

Discrete gradient methods are a powerful tool for the time discretization of dynamical systems, since they are structure-preserving regardless of the form of the total energy. In this work, we discuss the application of discrete gradient methods to the system class of nonlinear port-Hamiltonian differential-algebraic equations - as they emerge from the port- and energy-based modeling of physical systems in various domains. We introduce a novel numerical scheme tailored for semi-explicit differential-algebraic equations and further address more general settings using the concepts of discrete gradient pairs and Dirac-dissipative structures. Additionally, the behavior under system transformations is investigated and we demonstrate that under suitable assumptions port-Hamiltonian differential-algebraic equations admit a representation which consists of a parametrized port-Hamiltonian semi-explicit system and an unstructured equation. Finally, we present the application to multibody system dynamics and discuss numerical results to demonstrate the capabilities of our approach.


Verlagsausgabe §
DOI: 10.5445/IR/1000189990
Veröffentlicht am 27.01.2026
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Mechanik (IFM)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 05.2026
Sprache Englisch
Identifikator ISSN: 0168-9274, 1873-5460
KITopen-ID: 1000189990
Erschienen in Applied Numerical Mathematics
Verlag Elsevier
Band 223
Seiten 45–75
Vorab online veröffentlicht am 27.12.2025
Schlagwörter Port-Hamiltonian systems, Differential-algebraic equations, Structure-preserving discretization, Time integration methods, Discrete gradients
Nachgewiesen in Web of Science
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page