KIT | KIT-Bibliothek | Impressum | Datenschutz

Scale-invariant Monte Carlo and multilevel Monte Carlo estimation of mean and variance: An application to simulation of linear elastic bone tissue

Shivanand, Sharana Kumar ORCID iD icon 1,2; Rosić, Bojana
1 Scientific Computing Center (SCC), Karlsruher Institut für Technologie (KIT)
2 Technische Universität Braunschweig (TU Braunschweig)

Abstract (englisch):

We propose novel scale-invariant error estimators for the Monte Carlo and multilevel Monte Carlo estimation of mean and variance. For any linear transformation of the distribution of the quantity of interest, the computation cost across fidelity levels is optimized using a normalized error estimate, which is not only fully dimensionless but also remains robust to variations in the characteristics of the distribution. We demonstrate the effectiveness of the algorithms through application to a mechanical simulation of linear elastic bone tissue, where material uncertainty incorporating both heterogeneity and random anisotropy is considered in the constitutive law.


Verlagsausgabe §
DOI: 10.5445/IR/1000190016
Veröffentlicht am 27.01.2026
Cover der Publikation
Zugehörige Institution(en) am KIT Scientific Computing Center (SCC)
Technische Universität Braunschweig (TU Braunschweig)
Publikationstyp Zeitschriftenaufsatz
Publikationsdatum 15.01.2026
Sprache Englisch
Identifikator ISSN: 0045-7949
KITopen-ID: 1000190016
HGF-Programm 46.21.02 (POF IV, LK 01) Cross-Domain ATMLs and Research Groups
Erschienen in Computers & Structures
Verlag Elsevier
Band 321
Seiten Art.-Nr.: 108054
Vorab online veröffentlicht am 06.12.2025
Schlagwörter Monte Carlo; Multilevel Monte Carlo; Normalized error; Uncertainty quantification; Linear elasticity; h-statistics; Random anisotropy; Bone tissue
Nachgewiesen in Scopus
Web of Science
OpenAlex
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page