KIT | KIT-Bibliothek | Impressum | Datenschutz

A consistent and scalable framework suitable for boiling flows using the conservative diffuse interface method

Weber, Lorenz 1; Mukherjee, Aritra; Class, Andreas G. 1; Brandt, Luca
1 Institut für Thermische Energietechnik und Sicherheit (ITES), Karlsruher Institut für Technologie (KIT)

Abstract:

Interface-resolved simulations are essential for predicting and understanding boiling heat transfer phenomena. Such simulations generally come at a high computational cost, which continues to motivate the development of efficient frameworks. In recent years, conservative second-order phase field methods have gained popularity due to their efficient representation of phase interfaces. However, their potential for simulating complex boiling phenomena has not yet been explored. To address this gap, we develop a consistent and highly efficient framework suitable for simulating large-scale boiling flows. We derive a set of mixture equations to describe the two-phase flow. The mixture equations are coupled with the accurate conservative diffuse interface method [1] to capture the interface. We present additional terms in the momentum balance equation and demonstrate that the proposed momentum balance modifications are mandatory for accurately capturing phase-change-induced pressure jumps. To solve the set of equations, an alternative Fast Fourier Transform (FFT)-based pressure solution scheme is proposed. Additionally, a modified kinetic phase change model is utilized that does not involve calculating temperature gradients and avoids problem-dependent parameters. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000190025
Veröffentlicht am 28.01.2026
Originalveröffentlichung
DOI: 10.1016/j.jcp.2026.114680
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Thermische Energietechnik und Sicherheit (ITES)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 04.2026
Sprache Englisch
Identifikator ISSN: 0021-9991
KITopen-ID: 1000190025
HGF-Programm 32.12.01 (POF IV, LK 01) Design Basis Accidents and Materials Research
Erschienen in Journal of Computational Physics
Verlag Elsevier
Band 551
Seiten 114680
Nachgewiesen in Scopus
OpenAlex
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page