KIT | KIT-Bibliothek | Impressum | Datenschutz

Privacy-Preserving Federated Learning With Backdoor Resilience

Yordan, Yordanov

Abstract (englisch):

Federated learning (FL) has the ability to train a global model across many different clients
with diverse datasets while also preserving privacy. However, federated learning is by design
vulnerable to privacy inference attacks and poisoning attacks, allowing compromised clients
to infer private information about the clients or negatively influence the global model,
respectively. FLAME [26], a state-of-the-art framework, is designed to statistically remove
the influence of poisoning attacks, while being applicable to many attacker models and
keeping the model’s benign performance. To ensure these objectives, the FLAME protocol
introduces a defense framework that estimates the minimum sufficient amount of noise
to be injected into the global model after aggregation, so that backdoors are eliminated
but the benign performance does not deteriorate. To further reduce the amount of noise
and enhance the desired goals, FLAME utilizes adaptive clustering and weight clipping.
However, federated learning systems that implement FLAME still face significant privacy
risks from inference attacks, where malicious aggregators can exploit access to model
... mehr


Volltext §
DOI: 10.5445/IR/1000190049
Veröffentlicht am 30.01.2026
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Informationssicherheit und Verlässlichkeit (KASTEL)
Publikationstyp Hochschulschrift
Publikationsjahr 2026
Sprache Englisch
Identifikator KITopen-ID: 1000190049
HGF-Programm 46.23.01 (POF IV, LK 01) Methods for Engineering Secure Systems
Verlag Karlsruher Institut für Technologie (KIT)
Umfang V, 37 S.
Art der Arbeit Abschlussarbeit - Bachelor
Prüfungsdaten 08.12.2025
Referent/Betreuer Jiang, Yufan
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page