KIT | KIT-Bibliothek | Impressum | Datenschutz

Incorporating Causal Prior Knowledge into Deep Neural Networks

Youssef, Shahenda ORCID iD icon 1
1 Institut für Anthropomatik und Robotik (IAR), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

Deep Neural Networks have achieved significant success in solving complex problems across various domains due to their ability to capture complicated patterns in large datasets; however, they often require large amounts of data to learn effectively and often lack transparency in their decision-making processes, relying heavily on correlation rather than causation. Such limitations have led
to incorporating causal Prior Knowledge into neural network models which stands as a significant advancement in machine learning, such knowledge can mitigate this data dependency, guide the learning process, and enhance not only the robustness and generalizability of models but also their interpretability and explainability. Additionally, it enables models to adapt to new tasks and domains with greater ease and effectiveness.

This report tackles the importance of incorporating causal prior knowledge into deep neural networks and the methodologies that facilitate this incorporation. Fundamental concepts of causality are reviewed, with emphasis on its importance for advancing AI towards causal representation learning.


Verlagsausgabe §
DOI: 10.5445/KSP/1000168973
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Anthropomatik und Robotik (IAR)
Publikationstyp Proceedingsbeitrag
Publikationsjahr 2024
Sprache Englisch
Identifikator ISBN: 978-3-7315-1351-3
ISSN: 1863-6489
KITopen-ID: 1000190209
Erschienen in Proceedings of the 2023 Joint Workshop of Fraunhofer IOSB and Institute for Anthropomatics, Vision and Fusion Laboratory. Ed.: J. Beyerer ; T. Zander
Veranstaltung Joint Workshop of Fraunhofer IOSB and Institute for Anthropomatics, Vision and Fusion Laboratory (2023), Triberg, Deutschland, 30.07.2023 – 04.08.2023
Verlag KIT Scientific Publishing
Seiten 93-107
Serie Karlsruher Schriften zur Anthropomatik / Lehrstuhl für Interaktive Echtzeitsysteme, Karlsruher Institut für Technologie ; Fraunhofer-Inst. für Optronik, Systemtechnik und Bildauswertung IOSB Karlsruhe ; 65
Relationen in KITopen
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page