KIT | KIT-Bibliothek | Impressum | Datenschutz

Constrained collaborative optimization of charged particle tracking with multi-agent reinforcement learning

Bergen pCT Collaboration; Kortus, Tobias ; Keidel, Ralf; Gauger, Nicolas R.; Kieseler, Jan 1
1 Institut für Experimentelle Teilchenphysik (ETP), Karlsruher Institut für Technologie (KIT)

Abstract:

Reinforcement learning (RL) demonstrated immense success in modeling complex physics-driven
systems, providing end-to-end trainable solutions by interacting with a simulated or real environ-
ment, maximizing a scalar reward signal. In this work, we propose, building upon previous work,
an end-to-end multi-agent RL approach with assignment constraints for reconstructing particle
tracks in pixelated particle detectors. Our approach optimizes collaboratively a parameterized
policy, functioning as a heuristic to a multidimensional assignment problem, by jointly minimiz-
ing the total amount of particle scattering over the reconstructed tracks in a readout frame. To sat-
isfy constraints, guaranteeing a unique assignment of particle hits, we propose a safety layer solv-
ing a linear assignment problem for every joint action. Further, to enforce cost margins, increas-
ing the distance of the local policies predictions to the decision boundaries of the optimizer map-
pings, we recommend the use of an additional component in the blackbox gradient estimation,
forcing the policy to solutions with lower total assignment costs. We empirically show on simu-
... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000190397
Veröffentlicht am 10.02.2026
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Experimentelle Teilchenphysik (ETP)
Publikationstyp Zeitschriftenaufsatz
Publikationsdatum 01.02.2026
Sprache Englisch
Identifikator ISSN: 2632-2153
KITopen-ID: 1000190397
Erschienen in Machine Learning: Science and Technology
Verlag Institute of Physics Publishing Ltd (IOP Publishing Ltd)
Band 7
Heft 1
Seiten Art.-Nr.: 015021
Vorab online veröffentlicht am 29.01.2026
Nachgewiesen in Web of Science
OpenAlex
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page