KIT | KIT-Bibliothek | Impressum | Datenschutz

Advanced Substitution Model Selection Methods in RAxML-NG

Stelz, Christoph ORCID iD icon 1
1 Institut für Theoretische Informatik (ITI), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

With next generation sequencing, the cost to sequence a genome has decreased exponentially, even outpacing Moore's law. We therefore expect the use of phylogenetic inference tools to rise even further, with the tools facing a perpetual scalability challenge. The largest extent of studies (as well as users) now commends for increasingly automated methods as we observe a shift from manual workflows to reusable, highly automated pipelines. An important step in such phylogenetic analysis pipelines is model selection, which ranks the plethora of available DNA and protein substitution models according to their relative fit to the data. In this thesis, we present a novel implementation of a model selection procedure, integrated into RAxML-NG, a widely used tool for phylogenetic inference via Maximum Likelihood. It implements a number of heuristics to speed up execution and employs a robust parallelization scheme that also supports partitioned datasets and distributed memory systems. For 86.7% of amino acid, and 72.9% of single-gene DNA datasets, our implementation selects models with a BIC score difference of less than 10 compared to IQTree's ModelFinder and ModelTest-NG. ... mehr


Volltext §
DOI: 10.5445/IR/1000190434
Veröffentlicht am 11.02.2026
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Telematik (TM)
Institut für Theoretische Informatik (ITI)
Scientific Computing Center (SCC)
Publikationstyp Hochschulschrift
Publikationsjahr 2025
Sprache Englisch
Identifikator KITopen-ID: 1000190434
Verlag Karlsruher Institut für Technologie (KIT)
Umfang 61
Art der Arbeit Abschlussarbeit - Master
Prüfungsdaten 18.11.2025
Referent/Betreuer Stamatakis, Alexandros
Beigl, Michael
Togkousidis, Anastasis
Kozlov, Oleksiy M.
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page