KIT | KIT-Bibliothek | Impressum | Datenschutz

Towards secure federated learning for energy forecasting under adversarial attacks

Sievers, Jonas ORCID iD icon 1; Kumbhani, Krupali; Blank, Thomas ORCID iD icon 1; Simon, Frank ORCID iD icon 1; Mauthe, Andreas
1 Institut für Prozessdatenverarbeitung und Elektronik (IPE), Karlsruher Institut für Technologie (KIT)

Abstract:

Federated learning is increasingly used in energy forecasting, enabling buildings to collaboratively predict load, photovoltaic generation, and prosumption while preserving data privacy. However, this collaborative nature introduces new vulnerabilities, as manipulations by a single participant can propagate across the network. Such attacks can undermine grid balancing, limit flexibility provision, and reduce trust in decentralized energy systems. This work presents a comprehensive study of adversarial threats and defenses in federated energy forecasting. We compare structured manipulations generated with Generative Adversarial Networks against simple random perturbations in two attack scenarios: (i) data poisoning, where corrupted training data degrade global accuracy, and (ii) backdoors, where hidden triggers distort predictions in targeted time windows. Our experiments show that poisoning can increase global forecasting errors by up to 131 %, while backdoors raise local errors by up to 48 %. In both cases, Generative Adversarial Network-based attacks are consistently more effective than random perturbations, with backdoors proving especially challenging to detect due to their localized effect. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000190447
Veröffentlicht am 11.02.2026
Originalveröffentlichung
DOI: 10.1016/j.egyai.2026.100680
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Prozessdatenverarbeitung und Elektronik (IPE)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 01.2026
Sprache Englisch
Identifikator ISSN: 2666-5468
KITopen-ID: 1000190447
Erschienen in Energy and AI
Verlag Elsevier ScienceDirect
Band 23
Seiten Art.-Nr.: 100680
Vorab online veröffentlicht am 17.01.2026
Nachgewiesen in Scopus
OpenAlex
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page