KIT | KIT-Bibliothek | Impressum | Datenschutz

Post-processing of ensemble photovoltaic power forecasts with distributional and quantile regression methods

Mayer, Martin János ; Baran, Ágnes; Lerch, Sebastian ORCID iD icon 1; Horat, Nina 2; Yang, Dazhi; Baran, Sándor
1 Institut für Volkswirtschaftslehre (ECON), Karlsruher Institut für Technologie (KIT)
2 Institut für Statistik (STAT), Karlsruher Institut für Technologie (KIT)

Abstract:

Accurate and reliable forecasting of photovoltaic (PV) power production is crucial for grid operations, electricity markets, and energy planning, as solar systems now contribute a significant share of the electricity supply in many countries. PV power forecasts are often generated by converting forecasts of relevant weather variables to power forecasts via a model chain. The use of ensemble simulations from numerical weather prediction models results in probabilistic PV forecasts in the form of a forecast ensemble. However, weather forecasts often exhibit systematic errors that propagate through the model chain, leading to biased and/or uncalibrated PV power forecasts. These deficiencies can be mitigated by statistical post-processing. Using PV production data and corresponding short-term PV power ensemble forecasts at seven utility-scale PV plants in Hungary, we systematically evaluate and compare seven state-of-the-art methods for post-processing PV power forecasts. These include both parametric and non-parametric techniques, as well as statistical and machine learning-based approaches. Our results show that compared to the raw PV power ensemble, any form of statistical post-processing significantly improves the predictive performance reducing the mean continuous ranked probability score (CRPS) by 11.1–14.7%. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000190453
Veröffentlicht am 12.02.2026
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Statistik (STAT)
Institut für Volkswirtschaftslehre (ECON)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 03.2026
Sprache Englisch
Identifikator ISSN: 0038-092X, 1471-1257
KITopen-ID: 1000190453
Erschienen in Solar Energy
Verlag Elsevier
Band 307
Seiten Art.Nr: 114361
Vorab online veröffentlicht am 29.01.2026
Schlagwörter Distributional regression network, Ensemble forecast, Ensemble model output statistics, Photovoltaic energy, Post-processing, Quantile regression
Nachgewiesen in Scopus
OpenAlex
Dimensions
Web of Science
Globale Ziele für nachhaltige Entwicklung Ziel 7 – Bezahlbare und saubere Energie
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page