KIT | KIT-Bibliothek | Impressum | Datenschutz

PWNN: Power-Wasting Neural Network As Remote Fault Injector

Xu, Huashuangyang 1; Meschkov, Sergej ORCID iD icon 1; Meyers, Vincent 1; Tahoori, Mehdi Baradaran 1
1 Institut für Technische Informatik (ITEC), Karlsruher Institut für Technologie (KIT)

Abstract:

The explosive growth of AI-driven services has led to cloud-based Field Programmable Gate Array (FPGA) accelerators as key enablers of high-performance training and inference in modern data centers. Since 2024, the demand for deploying large AI workloads, especially Large Language Model (LLM), in the cloud has increased dramatically, intensifying competition among cloud providers and increasing pressure on shared FPGA infrastructures. This increasing reliance highlights the need for robust hardware security measures for cloud FPGAs. A particularly serious threat is fault injection attacks, which exploit dynamic voltage fluctuations to induce timing faults, potentially compromising functional integrity and bypassing cryptographic protections. However, existing verification procedures and structural Design Rule Check (DRC) remain blind to attacks embedded in benign-looking circuits. In this paper, we present Power-Wasting Neural Network (PWNN), a novel adversarial technique that leverages the inherent switching behavior of neural network operations to act as a power-waster circuit under adversarial input patterns. We systematically explore network architectures, and input patterns to craft configurations that induce voltage fluctuations capable of triggering timing faults for successful Differential Fault Analysis (DFA). ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000190457
Veröffentlicht am 12.02.2026
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Technische Informatik (ITEC)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2026
Sprache Englisch
Identifikator ISSN: 2569-2925
KITopen-ID: 1000190457
Erschienen in IACR Transactions on Cryptographic Hardware and Embedded Systems
Verlag Ruhr-Universität Bochum
Band 2026
Heft 1
Seiten 448 - 471
Vorab online veröffentlicht am 16.01.2026
Schlagwörter Fault injection attack, Neural network, AES key recovery, Cloud FPGA
Nachgewiesen in Scopus
OpenAlex
Dimensions
Globale Ziele für nachhaltige Entwicklung Ziel 9 – Industrie, Innovation und Infrastruktur
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page