KIT | KIT-Bibliothek | Impressum | Datenschutz

Physics-Informed Temperature Prediction of Lithium-Ion Batteries Using Decomposition-Enhanced LSTM and BiLSTM Models

Madani, Seyed Saeed; Shabeer, Yasmin ; Fowler, Michael; Panchal, Satyam; Ziebert, Carlos ORCID iD icon 1; Chaoui, Hicham ; Allard, François
1 Institut für Angewandte Materialien – Angewandte Werkstoffphysik (IAM-AWP), Karlsruher Institut für Technologie (KIT)

Abstract:

Accurately forecasting the operating temperature of lithium-ion batteries (LIBs) is essential for preventing thermal runaway, extending service life, and ensuring the safe operation of electric vehicles and stationary energy-storage systems. This work introduces a unified, physics-informed, and data-driven temperature-prediction framework that integrates mathematically governed preprocessing, electrothermal decomposition, and sequential deep learning architectures. The methodology systematically applies the governing relations to convert raw temperature measurements into trend, seasonal, and residual components, thereby isolating long-term thermal accumulation, reversible entropy-driven oscillations, and irreversible resistive heating. These physically interpretable signatures serve as structured inputs to machine learning and deep learning models trained on temporally segmented temperature sequences. Among all evaluated predictors, the Bidirectional Long Short-Term Memory (BiLSTM) network achieved the highest prediction fidelity, yielding an RMSE of 0.018 °C, a 35.7% improvement over the conventional Long Short-Term Memory (LSTM) (RMSE = 0.028 °C) due to its ability to simultaneously encode forward and backward temporal dependencies inherent in cyclic electrochemical operation. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000190465
Veröffentlicht am 12.02.2026
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte Materialien – Angewandte Werkstoffphysik (IAM-AWP)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2026
Sprache Englisch
Identifikator ISSN: 2032-6653
KITopen-ID: 1000190465
Erschienen in World Electric Vehicle Journal
Verlag MDPI
Band 17
Heft 1
Seiten 2
Vorab online veröffentlicht am 19.12.2025
Schlagwörter lithium-ion battery, battery temperature prediction, Long Short-Term Memory (LSTM), Bidirectional LSTM (BiLSTM), physics-informed machine learning, thermal modeling, electrothermal behavior, deep learning
Nachgewiesen in Scopus
OpenAlex
Dimensions
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page