KIT | KIT-Bibliothek | Impressum | Datenschutz

Mass Composition of Primary Cosmic Rays with GRAPES-3 Using Machine Learning Techniques

Rout, Subhalaxmi ; Mohanty, Pravata Kumar; Nayak, Aruna Kumar; Varsi, Fahim 1
1 Institut für Experimentelle Teilchenphysik (ETP), Karlsruher Institut für Technologie (KIT)

Abstract:

Precise measurements of the nuclear composition and energy spectrum of primary cosmic rays around the knee are essential to understand their origin, acceleration, and propagation. The GRAPES-3 experiment in Ooty, India, recently reported a spectral hardening in the proton spectrum at ∼166TeV using Gold’s unfolding method based on muon multiplicity distributions. To enhance composition sensitivity by incorporating additional observables, we implement a Deep Neural Network (DNN) using both muon multiplicity and shower age, along with other high-level reconstructed shower parameters. This work presents the strategy, performance, and reliability of the DNN-based approach for mass composition studies at GRAPES-3.


Verlagsausgabe §
DOI: 10.5445/IR/1000190583
Veröffentlicht am 12.02.2026
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Experimentelle Teilchenphysik (ETP)
Publikationstyp Proceedingsbeitrag
Publikationsdatum 24.09.2025
Sprache Englisch
Identifikator ISSN: 1824-8039
KITopen-ID: 1000190583
Erschienen in Proceedings of 39th International Cosmic Ray Conference — PoS(ICRC2025); Genf, Schweiz, 15.-24.07.2025
Veranstaltung 39th International Cosmic Ray Conference (ICRC 2025), Genf, Schweiz, 15.07.2025 – 24.07.2025
Verlag Scuola Internazionale Superiore di Studi Avanzati (SISSA)
Seiten Art.Nr: 374
Serie Proceedings of Science (PoC) ; 501
Nachgewiesen in OpenAlex
Dimensions
Scopus
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page