KIT | KIT-Bibliothek | Impressum | Datenschutz

A Parallel, Energy-Stable Low-Rank Integrator for Nonlinear Multi-Scale Thermal Radiative Transfer

Patwardhan, Chinmay ORCID iD icon 1; Kusch, Jonas
1 Fakultät für Mathematik (MATH), Karlsruher Institut für Technologie (KIT)

Abstract:

Thermal radiative transfer (TRT) governs phenomena ranging from supernovas in astrophysics to laser-driven fusion experiments in plasma physics. The interaction of radiation and matter involves prohibitively small time scales, nonlinear coupling, and high-dimensional particle dynamics, making conventional numerical methods prohibitively expensive. Dynamical low-rank approximation (DLRA), combined with asymptotic-preserving discretizations, offers a promising direction, but until now its use for nonlinear TRT has been fundamentally limited: stability regions of existing DLRA integrators are unknown in realistic nonlinear regimes, and coefficient updates remain computationally costly. We present an asymptotic-preserving, locally conservative, rank-adaptive, and parallel integrator for a macro–micro decomposition-based DLRA of the nonlinear TRT equations. Unlike previous approaches, our method is provably energy stable in the nonlinear setting, with step-size restrictions that capture both hyperbolic and parabolic CFL conditions. The integrator is constructed from the parallel BUG integrator, thus eliminating the need for augmented coefficient updates. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000190659
Veröffentlicht am 16.02.2026
Cover der Publikation
Zugehörige Institution(en) am KIT Fakultät für Mathematik (MATH)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2026
Sprache Englisch
Identifikator ISSN: 2332-4309, 2332-4325
KITopen-ID: 1000190659
Erschienen in Journal of Computational and Theoretical Transport
Verlag Taylor and Francis
Seiten 1–45
Vorab online veröffentlicht am 04.02.2026
Schlagwörter Thermal radiative transfer, nonlinear energy stability, asymptotic–preserving, dynamical low-rank approximation, parallel BUG integrator
Nachgewiesen in Web of Science
OpenAlex
Scopus
Relationen in KITopen
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page