KIT | KIT-Bibliothek | Impressum | Datenschutz

Physics-informed Neural Networks-based Model Predictive Control for Multi-link Manipulators

Nicodemus, Jonas 1; Kneifl, Jonas; Fehr, Jörg; Unger, Benjamin ORCID iD icon 1
1 Institut für Angewandte und Numerische Mathematik (IANM), Karlsruher Institut für Technologie (KIT)

Abstract:

We discuss nonlinear model predictive control (MPC) for multi-body dynamics via physics-informed machine learning methods. In more detail, we use a physics-informed neural networks (PINNs)-based MPC to solve a tracking problem for a complex mechanical system, a multi-link manipulator. PINNs are a promising tool to approximate (partial) differential equations but are not suited for control tasks in their original form since they are not designed to handle variable control actions or variable initial values. We thus follow the strategy of Antonelo et al. (arXiv:2104.02556, 2021) by enhancing PINNs with adding control actions and initial conditions as additional network inputs. Subsequently, the high-dimensional input space is reduced via a sampling strategy and a zero-hold assumption. This strategy enables the controller design based on a PINN as an approximation of the underlying system dynamics. The additional benefit is that the sensitivities are easily computed via automatic differentiation, thus leading to efficient gradient-based algorithms for the underlying optimal control problem.


Verlagsausgabe §
DOI: 10.5445/IR/1000190750
Veröffentlicht am 18.02.2026
Originalveröffentlichung
DOI: 10.1016/j.ifacol.2022.09.117
Scopus
Zitationen: 69
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte und Numerische Mathematik (IANM)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2022
Sprache Englisch
Identifikator ISSN: 2405-8963
KITopen-ID: 1000190750
Erschienen in IFAC-PapersOnLine
Verlag International Federation of Automatic Control (IFAC)
Band 55
Heft 20
Seiten 331–336
Vorab online veröffentlicht am 23.09.2022
Nachgewiesen in Scopus
OpenAlex
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page