KIT | KIT-Bibliothek | Impressum | Datenschutz

Model reduction on manifolds: A differential geometric framework

Buchfink, Patrick; Glas, Silke ; Haasdonk, Bernard; Unger, Benjamin ORCID iD icon 1
1 Institut für Angewandte und Numerische Mathematik (IANM), Karlsruher Institut für Technologie (KIT)

Abstract:

Using nonlinear projections and preserving structure in model order reduction (MOR) are currently active research fields. In this paper, we provide a novel differential geometric framework for model reduction on smooth manifolds, which emphasizes the geometric nature of the objects involved. The crucial ingredient is the construction of an embedding for the low-dimensional submanifold and a compatible reduction map, for which we discuss several options. Our general framework allows capturing and generalizing several existing MOR techniques, such as structure preservation for Lagrangian- or Hamiltonian dynamics, and using nonlinear projections that are, for instance, relevant in transport-dominated problems. The joint abstraction can be used to derive shared theoretical properties for different methods, such as an exact reproduction result. To connect our framework to existing work in the field, we demonstrate that various techniques for data-driven construction of nonlinear projections can be included in our framework.


Verlagsausgabe §
DOI: 10.5445/IR/1000190764
Veröffentlicht am 18.02.2026
Originalveröffentlichung
DOI: 10.1016/j.physd.2024.134299
Scopus
Zitationen: 6
Web of Science
Zitationen: 6
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte und Numerische Mathematik (IANM)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 11.2024
Sprache Englisch
Identifikator ISSN: 0167-2789
KITopen-ID: 1000190764
Erschienen in Physica D: Nonlinear Phenomena
Verlag Elsevier
Band 468
Seiten Art.-Nr.: 134299
Vorab online veröffentlicht am 24.07.2024
Nachgewiesen in OpenAlex
Scopus
Web of Science
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page