KIT | KIT-Bibliothek | Impressum | Datenschutz

On Length Spectra of Lattices

Willging, Thomas

Abstract:

The aim of this thesis is to study Schmutz Schaller's conjecture that in dimensions 2 to 8 the lattices with the best sphere packings have maximal lengths. This means that the distinct norms which occur in these lattices are greater than those of any other lattice in the same dimension with the same covolume.
Although the statement holds asymptotically we explicitly present a counter-example. However, it seems that there is nothing but this exception.


Volltext §
DOI: 10.5445/IR/1000020795
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Algebra und Geometrie (IAG)
Publikationstyp Hochschulschrift
Publikationsjahr 2010
Sprache Englisch
Identifikator urn:nbn:de:swb:90-207959
KITopen-ID: 1000020795
Verlag Karlsruher Institut für Technologie (KIT)
Art der Arbeit Dissertation
Fakultät Fakultät für Mathematik (MATH)
Institut Institut für Algebra und Geometrie (IAG)
Prüfungsdaten 16.11.2010
Schlagwörter Lattices, Quadratic Forms
Relationen in KITopen
Referent/Betreuer Kühnlein, S.
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page