KIT | KIT-Bibliothek | Impressum
Open Access Logo
§
Volltext
URN: urn:nbn:de:swb:90-244357

Monodromy Representations and Lyapunov Exponents of Origamis

Kappes, André

Abstract:
Origamis are translation surfaces obtained by gluing finitely many unit squares and provide an easy access to Teichmüller curves. In particular, their monodromy represenation can be explicitely determined. A general principle for the decomposition of this represenation is exhibited and applied to examples. Closely connected to it is a dynamical cocycle on the Teichmüller curve. It is shown that its Lyapunov exponents, otherwise inaccessible, can be computed for a subrepresentation of rank two.


Zugehörige Institution(en) am KIT Institut für Algebra und Geometrie (IAG)
Publikationstyp Hochschulschrift
Jahr 2011
Sprache Englisch
Identifikator KITopen ID: 1000024435
Abschlussart Dissertation
Fakultät Fakultät für Mathematik (MATH)
Institut Institut für Algebra und Geometrie (IAG)
Prüfungsdaten 25.05.2011
Referent/Betreuer Prof. G. Weitze-Schmithüsen
URLs Verlagsausg.
Schlagworte Translationsfläche, Origami, Teichmüllerkurve, Monodromiedarstellung, Variation von Hodge-Strukturen, Lyapunov-Exponent
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft KITopen Landing Page