KIT | KIT-Bibliothek | Impressum | Datenschutz
Open Access Logo
DOI: 10.5445/IR/1000045137/post
Veröffentlicht am 27.08.2018
DOI: 10.5445/IR/1000045137
Veröffentlicht am 27.08.2018
DOI: 10.1007/s12667-013-0085-1
Zitationen: 12

Reducing computing time of energy system models by a myopic approach

Babrowski, Sonja; Heffels, Tobias; Jochem, Patrick; Fichtner, Wolf

In this paper, the performance of the existing energy system model PERSEUS-NET is improved in terms of computing time. Therefore, the possibility of switching from a perfect foresight to a myopic approach has been implemented. PERSEUS-NET is a linear optimization model generating scenarios of the future German electricity generation system until 2030, whilst considering exogenous regional characteristics such as electricity demand and existing power plants as well as electricity transmission network restrictions. Up to now, the model has been based on a perfect foresight approach, optimizing all variables over the whole time frame in a single run, thus determining the global optimum. However, this approach results in long computing times due to the high complexity of the problem. The new myopic approach splits the optimization intomultiple, individually smaller, optimization problems each representing a 5 year period. The change within the generation system in each period is determined by optimizing the subproblem, whilst taking into account only the restrictions of that particular period. It was found that the optimization over the ... mehr

Zugehörige Institution(en) am KIT Institut für Industriebetriebslehre und Industrielle Produktion (IIP)
Karlsruhe Service Research Institute (KSRI)
Publikationstyp Zeitschriftenaufsatz
Jahr 2014
Sprache Englisch
Identifikator ISSN: 1868-3967, 1868-3975
URN: urn:nbn:de:swb:90-451372
KITopen-ID: 1000045137
Erschienen in Energy systems
Band 5
Heft 1
Seiten 65-83
Schlagworte Myopic, Perfect foresight, Energy system modelling, PERSEUS
Nachgewiesen in Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft KITopen Landing Page