KIT | KIT-Bibliothek | Impressum | Datenschutz

$L^p$ estimates for wave equations with specific $C^{0,1}$ coefficients

Frey, Dorothee ORCID iD icon; Portal, Pierre


Peral/Miyachi’s celebrated theorem on fixed time $L^p$ estimates with loss of derivatives for the wave equation states that the operator $(I-\Delta)^{-\frac{\alpha}{2}}\exp(i\sqrt{-\Delta})$ is bounded on $L^p(\mathbb{R}^d)$ if and only if $\alpha\ge s_p:=(d-1)\left|\frac{1}{p}-\frac{1}{2}\right|$. We extend this result tooperators of the form $L=−\displaystyle\sum_{j=1}^d a_j\partial_j a_j\partial_j$, for functions $x\mapsto a_i(x_i)$ that are bounded above and below, but merely Lipschitz continuous. This is below the $C^{1,1}$ regularity that is known to be necessary in general for Strichartz estimates in dimension $d\ge2$. Our proof is based on an approach to the boundedness of Fourier integral operators recently developed by Hassell, Rozendaal, and the second author. We construct a scale of adapted Hardy spaces on which $\exp(i\sqrt{L})$ is bounded by lifting $L^p$ functions to the tent space $T^{p,2}(\mathbb{R}^d)$, using a wave packet transform adapted to the Lipschitz metric induced by $A$. The result then follows from Sobolev embedding properties of these spaces.

Volltext (Version 2) §
DOI: 10.5445/IR/1000124653/v2
Veröffentlicht am 27.04.2021
Volltext (Version 1) §
DOI: 10.5445/IR/1000124653
Veröffentlicht am 20.10.2020
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Analysis (IANA)
Sonderforschungsbereich 1173 (SFB 1173)
Publikationstyp Forschungsbericht/Preprint
Publikationsjahr 2020
Sprache Englisch
Identifikator ISSN: 2365-662X
KITopen-ID: 1000124653
Verlag Karlsruher Institut für Technologie (KIT)
Umfang 24 S.
Serie CRC 1173 Preprint ; 2020/29
Projektinformation SFB 1173/2 (DFG, DFG KOORD, SFB 1173/2 2019)
Externe Relationen Siehe auch
Schlagwörter wave equation, Fourier integral operators, Hardy spaces
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page