KIT | KIT-Bibliothek | Impressum | Datenschutz

Analysis of the Matrix Event Graph Replicated Data Type

Jacob, Florian; Beer, Carolin; Henze, Norbert; Hartenstein, Hannes

Abstract (englisch):
Matrix is a new kind of decentralized, topic-based publish-subscribe middleware for communication and data storage that is getting particularly popular as a basis for secure instant messaging. By comparison with traditional decentralized communication systems, Matrix replaces pure message passing with a replicated data structure. This data structure, which we extract and call the Matrix Event Graph (MEG), depicts the causal history of messages. We show that this MEG represents an interesting and important replicated data type for decentralized applications that are based on causal histories of publish-subscribe events: First, we prove that the MEG is a Conflict-Free Replicated Data Type for causal histories and, thus, provides Strong Eventual Consistency (SEC). With SEC being among the best known achievable trade-offs in the scope of the well-known CAP theorem, the MEG provides a powerful consistency guarantee while being available during network partition. Second, we discuss the implications of byzantine attackers on the data type’s properties. We note that the MEG, as it does not strive for consensus or strong consistency, can cope with $n>f$ environments with $n$ participants, of which $f$ are byzantine. ... mehr

Open Access Logo

Verlagsausgabe §
DOI: 10.5445/IR/1000129939
Veröffentlicht am 23.02.2021
Postprint §
DOI: 10.5445/IR/1000129939/post
Veröffentlicht am 23.02.2021
Preprint §
DOI: 10.5445/IR/1000129939/pre
Veröffentlicht am 23.02.2021
DOI: 10.1109/ACCESS.2021.3058576
Cover der Publikation
Zugehörige Institution(en) am KIT Kompetenzzentrum für angewandte Sicherheitstechnologie (KASTEL)
Institut für Stochastik (STOCH)
Fakultät für Informatik (INFORMATIK)
Publikationstyp Zeitschriftenaufsatz
Publikationsdatum 23.02.2021
Sprache Englisch
Identifikator ISSN: 2169-3536
KITopen-ID: 1000129939
Erschienen in IEEE access
Verlag Institute of Electrical and Electronics Engineers (IEEE)
Band 9
Seiten 28317–28333
Nachgewiesen in Dimensions
Relationen in KITopen
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page