KIT | KIT-Bibliothek | Impressum | Datenschutz

On the Boussinesq Equations with Non-monotone Temperature Profiles

Zillinger, Christian ORCID iD icon 1
1 Karlsruher Institut fĂŒr Technologie (KIT)

Abstract:

In this article, we consider the asymptotic stability of the two-dimensional Boussinesq equations with partial dissipation near a combination of Couette flow and temperature profiles T(y). As a first main result, we show that if 𝑇â€Č is of size at most 𝜈$^{1/3}$ in a suitable norm, then the linearized Boussinesq equations with only vertical dissipation of the velocity but not of the temperature are stable. Thus, mixing enhanced dissipation can suppress Rayleigh–BĂ©nard instability in this linearized case. We further show that these results extend to the (forced) nonlinear equations with vertical dissipation in both temperature and velocity.


Verlagsausgabe §
DOI: 10.5445/IR/1000133890
Veröffentlicht am 14.06.2021
Originalveröffentlichung
DOI: 10.1007/s00332-021-09723-3
Scopus
Zitationen: 9
Web of Science
Zitationen: 9
Dimensions
Zitationen: 13
Cover der Publikation
Zugehörige Institution(en) am KIT Institut fĂŒr Analysis (IANA)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 08.2021
Sprache Englisch
Identifikator ISSN: 0938-8974, 1432-1467
KITopen-ID: 1000133890
Erschienen in Journal of nonlinear science
Verlag Springer
Band 31
Heft 4
Seiten 64
Vorab online veröffentlicht am 24.05.2021
Nachgewiesen in Scopus
Web of Science
Dimensions
Relationen in KITopen
KIT – Die ForschungsuniversitĂ€t in der Helmholtz-Gemeinschaft
KITopen Landing Page