KIT | KIT-Bibliothek | Impressum | Datenschutz

A multi-level stochastic collocation method for Schrödinger equations with a random potential

Jahnke, Tobias; Stein, Benny

Abstract:

We propose and analyze a numerical method for time-dependent linear Schrödinger equations with uncertain parameters in both the potential and the initial data. The random parameters are discretized by stochastic collocation on a sparse grid, and the sample solutions in the nodes are approximated with the Strang splitting method. The computational work is reduced by a multi-level strategy, i.e. by combining information obtained from sample solutions computed on different refinement levels of the discretization. We prove new error bounds for the time discretization which take the finite regularity in the stochastic variable into account, and which are crucial to obtain convergence of the multi-level approach. The predicted cost savings of the multi-level stochastic collocation method are verified by numerical examples.


Volltext §
DOI: 10.5445/IR/1000143727
Veröffentlicht am 15.03.2022
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte und Numerische Mathematik (IANM)
Sonderforschungsbereich 1173 (SFB 1173)
Publikationstyp Forschungsbericht/Preprint
Publikationsmonat/-jahr 03.2022
Sprache Englisch
Identifikator ISSN: 2365-662X
KITopen-ID: 1000143727
Verlag Karlsruher Institut für Technologie (KIT)
Umfang 29 S.
Serie CRC 1173 Preprint ; 2022/19
Projektinformation SFB 1173/2 (DFG, DFG KOORD, SFB 1173/2 2019)
Externe Relationen Siehe auch
Schlagwörter uncertainty quantification, splitting methods, Strang splitting, Schrödinger equation, sparse grids,, stochastic collocation method, multi-level method
Relationen in KITopen
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page