KIT | KIT-Bibliothek | Impressum | Datenschutz

Monotonicity-based shape reconstruction for an inverse scattering problem in a waveguide

Arens, Tilo 1; Griesmaier, Roland 1; Zhang, Ruming 1
1 Institut für Angewandte und Numerische Mathematik (IANM), Karlsruher Institut für Technologie (KIT)

Abstract:

We consider an inverse medium scattering problem for the Helmholtz equation in a closed cylindrical waveguide with penetrable compactly supported scattering objects. We develop novel monotonicity relations for the eigenvalues of an associated modified near field operator, and we use them to establish linearized monotonicity tests that characterize the support of the scatterers in terms of near field observations of the corresponding scattered waves. The proofs of these shape characterizations rely on the existence of localized wave functions, which are solutions to the scattering problem in the waveguide that have arbitrarily large norm in some prescribed region, while at the same time having arbitrarily small norm in some other prescribed region. As a byproduct we obtain a uniqueness result for the inverse medium scattering problem in the waveguide. Numerical examples are presented to document the potentials and limitations of this approach.


Volltext §
DOI: 10.5445/IR/1000153499
Veröffentlicht am 07.12.2022
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte und Numerische Mathematik (IANM)
Publikationstyp Forschungsbericht/Preprint
Publikationsmonat/-jahr 12.2022
Sprache Englisch
Identifikator ISSN: 2365-662X
KITopen-ID: 1000153499
Verlag Karlsruher Institut für Technologie (KIT)
Umfang 28 S.
Serie CRC 1173 Preprint ; 2022/69
Projektinformation SFB 1173/2 (DFG, DFG KOORD, SFB 1173/2 2019)
Externe Relationen Abstract/Volltext
Schlagwörter inverse scattering, Helmholtz equation, waveguide, monotonicity
Relationen in KITopen
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page