KIT | KIT-Bibliothek | Impressum | Datenschutz

Monotonicity-based shape reconstruction for an inverse scattering problem in a waveguide

Arens, Tilo 1; Griesmaier, Roland 1; Zhang, Ruming
1 Institut für Angewandte und Numerische Mathematik (IANM), Karlsruher Institut für Technologie (KIT)

Abstract:

We consider an inverse medium scattering problem for the Helmholtz equation in a closed cylindrical waveguide with penetrable compactly supported scattering objects. We develop novel monotonicity relations for the eigenvalues of an associated modified near field operator, and we use them to establish linearized monotonicity tests that characterize the support of the scatterers in terms of near field observations of the corresponding scattered waves. The proofs of these shape characterizations rely on the existence of localized wave functions, which are solutions to the scattering problem in the waveguide that have arbitrarily large norm in some prescribed region, while at the same time having arbitrarily small norm in some other prescribed region. As a byproduct we obtain a uniqueness result for the inverse medium scattering problem in the waveguide with a simple proof. Some numerical examples are presented to document the potentials and limitations of this approach.


Verlagsausgabe §
DOI: 10.5445/IR/1000160558
Veröffentlicht am 13.07.2023
Originalveröffentlichung
DOI: 10.1088/1361-6420/acd4e0
Scopus
Zitationen: 3
Web of Science
Zitationen: 3
Dimensions
Zitationen: 3
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte und Numerische Mathematik (IANM)
Publikationstyp Zeitschriftenaufsatz
Publikationsdatum 01.07.2023
Sprache Englisch
Identifikator ISSN: 0266-5611, 1361-6420
KITopen-ID: 1000160558
Erschienen in Inverse Problems
Verlag Institute of Physics Publishing Ltd (IOP Publishing Ltd)
Band 39
Heft 7
Seiten Art.-Nr.: 075009
Vorab online veröffentlicht am 09.06.2023
Nachgewiesen in Web of Science
Scopus
Dimensions
Relationen in KITopen
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page