KIT | KIT-Bibliothek | Impressum | Datenschutz

Identifying drivers and mitigators for congestion and redispatch in the German electric power system with explainable AI

Titz, Maurizio; Pütz, Sebastian 1; Witthaut, Dirk
1 Institut für Automation und angewandte Informatik (IAI), Karlsruher Institut für Technologie (KIT)

Abstract:

The transition to a sustainable energy supply challenges the operation of electric power systems in various ways. Transmission grid loads increase as wind and solar power is often installed far away from the consumers. System operators resolve grid congestion via countertrading or redispatch to ensure grid stability. While some drivers of congestion are known, the magnitude of their impact is unclear, and other factors might still be unidentified.
In this study, we conduct a data-driven investigation of congestion in the German transmission grid that reveals drivers and mitigators and quantifies their impact ex-post. Specifically, we used Gradient Boosted Trees and SHAP values to develop an explainable machine learning model for the hourly volume of redispatch and countertrade. As expected, wind power generation in northern Germany emerged as the main driver. Cross-border electricity trading, especially with Denmark, also plays an important role. German solar power has very little effect. Furthermore, our results suggest that run-of-river generation in the alpine region has a strong mitigating effect. Our results support the idea that market design changes, e.g., a bidding zone split, could contribute to congestion prevention.


Verlagsausgabe §
DOI: 10.5445/IR/1000167161
Veröffentlicht am 10.01.2024
Originalveröffentlichung
DOI: 10.1016/j.apenergy.2023.122351
Scopus
Zitationen: 4
Web of Science
Zitationen: 1
Dimensions
Zitationen: 5
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Automation und angewandte Informatik (IAI)
Publikationstyp Zeitschriftenaufsatz
Publikationsdatum 15.02.2024
Sprache Englisch
Identifikator ISSN: 0306-2619
KITopen-ID: 1000167161
HGF-Programm 37.12.02 (POF IV, LK 01) Design,Operation & Digitalization of the Future Energy Grids
Weitere HGF-Programme 46.21.04 (POF IV, LK 01) HAICU
Erschienen in Applied Energy
Verlag Elsevier
Band 356
Seiten 122351
Vorab online veröffentlicht am 25.11.2023
Schlagwörter Congestion management, Cross-border flows, Electricity trading, Explainable artificial intelligence grid congestion, Redispatch
Nachgewiesen in Scopus
Dimensions
Web of Science
Relationen in KITopen
Globale Ziele für nachhaltige Entwicklung Ziel 7 – Bezahlbare und saubere Energie
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page