KIT | KIT-Bibliothek | Impressum | Datenschutz

PillarSegNet: Pillar-based Semantic Grid Map Estimation using Sparse LiDAR Data

Fei, Juncong; Peng, Kunyu ORCID iD icon; Heidenreich, Philipp; Bieder, Frank; Stiller, Christoph

Abstract:

Semantic understanding of the surrounding environment is essential for automated vehicles. The recent publication of the SemanticKITTI dataset stimulates the research on semantic segmentation of LiDAR point clouds in urban scenarios. While most existing approaches predict sparse pointwise semantic classes for the sparse input LiDAR scan, we propose PillarSegNet to be able to output a dense semantic grid map. In contrast to a previously proposed grid map method, PillarSegNet uses PointNet to learn features directly from the 3D point cloud and then conducts 2D semantic segmentation in the top view. To train and evaluate our approach, we use both sparse and dense ground truth, where the dense ground truth is obtained from multiple superimposed scans. Experimental results on the SemanticKITTI dataset show that PillarSegNet achieves a performance gain of about 10% mIoU over the state-of-the-art grid map method.


Volltext §
DOI: 10.5445/IR/1000168177
Veröffentlicht am 07.02.2024
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Mess- und Regelungstechnik (MRT)
Publikationstyp Forschungsbericht/Preprint
Publikationsdatum 10.05.2021
Sprache Englisch
Identifikator KITopen-ID: 1000168177
Verlag arxiv
Schlagwörter Computer Vision and Pattern Recognition (cs.CV), Robotics (cs.RO)
Nachgewiesen in arXiv
Dimensions
Relationen in KITopen
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page